Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

1 0of 25

SDPublisher: Getting Started and Reference Documentation

Reference documentation, v. 1.1. 21 September 2009.

1. Getting started with Scholarly Digital Publisher

This is the documentation for SDPublisher, to accompany the public release of SDPublisher
1.1 in September 2009. Areas where further change is likely or desirable are noted in red text.
Patience!

Comments, suggestions: to Peter Robinson

This document sets out a series of exercises introducing the Scholarly Digital Publisher
('SDPublisher') system. By the end of this series of exercises, you will:

e Have seen how SDPublisher works

¢ Have met most of the commands which enable SDPublisher to work

e Have seen enough of SDPublisher to know if it can do what you want it to do (if the answer is
not 'yes' we would like to know what it cannot do) - and to decide if you like the way it does it

¢ Have learnt enough to make your own electronic publications with SDPublisher.

1.1 Introducing SDPublisher

SDPublisher can be thought of as a next-generation version of the Anastasia Publishing
System, also developed by people associated with Scholarly Digital Editions, UK: see www.sd-
editions.com/anastasia. SDPublisher retains the distinctive model of Anastasia: it sees XML as
a stream as well as a hierarchy. Accordingly, it does not fit either of the common models of
XML processors: it is neither a 'push XML' nor a 'pull XML' system, but a 'stream XML' system.
It is therefore highly suited to processing documents characterized by multiple overlapping
hierarchies: showing a book by pages, or by chapters, for example. Another distinctive feature
of SDPublisher is that you do NOT have to use XSLT (though you can if your really want to).
For many of us, this is a notable advantage.

SDPublisher incorporates the 'Pixelise' application first developed by Andrew West, and carried
on further by Andrew, Zeth Green, Ralph Janke and Peter Robinson. Andrew West was
responsible for the key decisions, to use Berkeley DB XML as the 'back end' database, to use
Python as the scripting language, and to use the Django framework as the Python
environment. As of 28 April 2009, the code for SDPublisher was at pixelise.org.

While SDPublisher shares the same model of text as does Anastasia, it is different from
Anastasia in almost every other respect. Anastasia required that the XML be transformed into a
series of binary files before it could be published (using the 'GroveMaker' application), which
meant that even the smallest changes to the document required complete reprocessing of all
the data. Further, the publishing system of Anastasia was built as a C-language module
compiled into Apache 1, and used TCL as a scripting language. This meant that Anastasia
could only run with Apache webservers, and indeed the restriction to Apache 1, now outdated,
together with the use of 'C', made maintenance of Anastasia increasingly difficult. Further, TCL
is not a popular language. In contrast, SDPublisher:

o Uses a database for all data storage. This means document fragments can be updated
dynamically and the results seen immediately. By default, SDPublisher uses Berkeley DB
XML, an exceptionally powerful and robust native XML database (www.oracle.com/database
/berkeley-db/xml/). However, we have designed SDPublisher so that one could use another
XML database, or indeed any database at all.

e Uses Python as the program environment and language. This means that SDPublisher could

20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

run on any server supporting Python: that is, all major server systems. Python is a very
popular and powerful language.

¢ Uses the Django framework in Python. This is a very widely-used publishing system,
much-favoured in high-traffic websites.

1.2 Starting out with SDPublisher; what you need

We suggest you work your way through this document first. This contains a simplified
introduction to show how SDPublisher works. After you work your way through this, you could
go to the Reference documentation section, for a more formal account of the functions and
tools available in SDPublisher.

You will need the following:

o Networked access with an up-to-date web browser

e Areasonable knowledge of XML

o Atext-only editor, for example NoteTab on Windows or BBEdit on the Macintosh. Do NOT try
and use Microsoft Word.

This documentation has been written for Macintosh OS X, Windows, and Linux systems.

1.3 Getting ready to start

First, you have to have get an appropriate version of Python. As of 21 September 2009, for
Macintosh this was 2.5 or later (up to 2.6.2: we have not tested SDPublisher with the
in-process Python 3). For Windows, you have to use a 2.5 version (2.5.4, for example). If you
have Windows, you have to get it as follows:

e Download and install Python 2.5 (2.5.4; not 2.6 or later) from http://www.python.org/. By
default, Python will install in C:\Python25 (for Python 2.5). Currently (September 2009) the
Python bindings for Berkeley DB XML only work with Python 2.5.

¢ You will need to run Python from the command prompt. To do this, start the command prompt
application and type 'set path=%path%;C:\python25' at the prompt, followed by return. In
Windows XP, you get to the command prompt by choosing 'Run' from the start menu and
typing 'cmd'.

e Check that Python is correctly installed by typing 'Python' at the prompt. If all is well, you will
receive cheering messages

If you have a Mac with later than 10.5, no trouble: Python 2.5 is already installed. You could
also install 2.6.2 over this, if you wish, from http://www.python.org/. It will automatically be
installed in the right place. You can check that Python is correctly installed by typing 'Python' at
the terminal prompt. (We have not tested SDPublisher on Mac systems older than 10.4.)

Second, you have to get Berkeley DB XML. Download and install from http://www.oracle.com
/technology/software/products/berkeley-db/xml/index.html. As of September 2009 the
operational version for Windows was 2.4.13: install this version, not the later 2.4.16 or 2.5.13.
Installation on a Mac is much more demanding. There is no binary, so you have to compile it
yourself from the terminal. You will need to have the Mactinosh developer tools, including the
gcc compiler: get these from http://developer.apple.com/Tools/ (warning! this is a 1 GB
download!). Then download the Unix/Posix version of DB XML; cd into the toplevel of the
downloaded directory, type 'sh buildall.sh' and wait several hours. As of September 2009,
2.4.16 worked on Macintosh 10.5; we have not yet tested 2.5.13.

Third, you have to install the Python bindings for DB XML. This is easily done in Windows. In
the folder 'C:\Program Files\Oracle\Berkeley DB XML 2.4.13\python' you will see the

20f25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

executable 'dbxml-2.4.13.win32-py2.5'. Just double click on that and the bindings will install
into the Python 2.5 installation. On a Macintosh, you will need to cd into the 'dbxml/src/python’
folder and type 'sudo python setup.py install' (and be prepared to wait some time).

Fourth, you have to get Django, from http://www.djangoproject.com/download/. As of
September 2009, the latest official version was 1.1. Download the Django-1.1-final.tar.gz file
from here. For Windows, you will need PKZip, or WinZip, or similar, to unpack this into the
folder Django-1.1-final. You should have this folder in your C:\Program Files folder. Now, install
Django. You may be able to do this just by double-clicking on the 'set up' icon in the Django-
1.1-final folder (however, this often fails). Alternatively, do this from the command line by cd-ing
into the folder (‘cd C:\Program Files\Django-1.1-final') and then typing 'python setup.py install'.
On the Mac, the installer should do all this for you.

Finally, you are ready to get SDPublisher. SDPublisher is distributed as a single folder, from a
link in www.sd-editions.com/SDPublisher, or directly at http://www.sd-editions.com/SDPublisher
/SDP110/SDPublisher.zip. (If you just wanted the latest Pixelise, without the SDPublisher
wrapping, you could get it by typing 'bzr branch Ip:pixelise' into the terminal; you need Bazaar
installed for this.) Download that folder and uncompress it somewhere accessible. Now cd into
that folder ('cd SDPublisher'). You can (at last) see something happen now by typing 'python
manage.py runserver' at the prompt. You will get various messages, to the effect that a
'development server is running at http://127.0.0.1:8000/'. You can check that it actually is by
starting an internet browser and typing the address ' http://127.0.0.1:8000/" into the browser.
You should see a Django 'page not found' page. We are getting close! Type '
http://127.0.0.1:8000/SDPintro/text'. You will see this documentation appear in the browser
window, as a SDPublisher electronic book.

Before we go on, let's look at what we have downloaded. You will see in the SDPublisher folder
the following:

e init__.py (and possibly __init__.pyc): files used internally by Python/Django. You should
never need to deal with these

e manage.py: this file gives access to various management functions in SDPublisher. See 3.1
below

e origin: this folder contains the material (from the first three chapters of Darwin's 'Origin of
Species') used in the next sections of this tutorial to introduce how a SDPublisher digital book
is made

¢ pixelise: this folder contains the core 'pixelise' application: the XML processing engine used
by SDPublisher. Pixelise, named after Andrew West's cat, is the core application within
SDPublisher

o SDPintro: this folder contains this documentation, presented as a SDPublisher electronic
book

o settings.py: this file holds information needed by Django and Python, governing how
SDPublisher works

o urls.py: this file tells Python and Django about the URLs used by SDPublisher

Open up settings.py. Most of this is internal information used by Django and Python, which you
do not need to know about. You do need to understand the section 'INSTALLED APPS"

INSTALLED_APPS = (
'django.contrib.auth’,
'django.contrib.contenttypes’,
'django.contrib.sessions’,
'django.contrib.sites’,
'SDPublisher.pixelise’,

30of25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

4 of 25

'SDPublisher.SDPintro’,
'SDPublisher.origin’,

)

The first four lines are used by Django. The last three lines concern us:

o SDPublisher.pixelise: this tells Django about the pixilise application, contained in the folder
'pixelise’

e SDPublisher.SDPinto and SDPublisher.origin: this tells Django about the SDPublisher books
'SDPintro’ and 'origin', which Django thinks are actually applications contained in the folders
'SDPintro’ and 'origin'

1.4 Your first SDPublisher publication: showing the text

Now, we are really ready to go! We are now going to make our first XML SDPublisher-powered
application, using a specimen XML file 'origin.xml', containing the text of the first three chapters
of the 1859 edition of Darwin's 'On the Origin of Species'. The 'origin' folder contains the
‘origin.xml' file and various other useful files and folders to help you on your way:

e _init__.py and models.py (and possibly __init__.pyc, models.pyc): files used internally by
Python/Django

o origin.xml: the source XML for this tutorial publication, encoded in TEllite form. You could
open this up to check that indeed what we have is XML

¢ origin.dbxml: the DB XML database ready to receive the XML for the 'origin' publication. This
should be empty when you start

¢ pixelates: a folder containing a single subfolder, 'origin’, containing a file 'base.py'. This file
holds what we call 'pixelates': instructions on exactly how individual XML elements should be
presented.

o templates: a folder containing a single subfolder, 'origin', containing various htmil files. This file
are actually html templates, providing the frame for the html we will create from the origin.xml

o urls.py: this file is used together with the 'urls.py' file in the parent SDPublisher folder to
construct the URLSs for the 'origin' SDPublisher book

¢ views.py: this file holds the key processing scripts used by SDPublisher for this book

o www: this folder contains materials, such as static HTML and other files, which might be
needed by the publication

First, load the file origin.xml into your new publishing system by typing 'python manage.py
putxml origin -f origin/origin.xml -n text' at the terminal prompt (make sure you are in the
SDPublisher directory). This should load 'origin.xml' into the Berkeley DB XML dabatase
system, ready for you to publish. It is possible that this file is already included in the database,
in which case you will get an error message 'origin/origin.xml is already in the database.
Skipped.' In that case, you could either carry straight on, or type 'python manage.py rmxml
origin -n text' into the terminal to remove it, followed by 'python manage.py putxml origin -f
origin/origin.xml -n text' to put it back.

We can start work on this publication. We need to create an appropriate URL for our
publication. First, you have to edit the urls.py file in the 'SDPublisher' folder. Open this and add
the line

(r'*origin/', include(‘origin.urls")),

to the urlpatterns variable, so that this reads, ignoring the lines commented out by #:

urlpatterns = patterns(",

20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

(r'*SDPintro/', include('SDPintro.urls")),
(r'*origin/', include('origin.urls')),

)

This line tells SDPublisher that when a URL request arrives beginning '..origin/', look in the file
'urls.py' inside the 'origin' folder for the rest of the URL. So now, we have to edit the second
'urls.py' file, contained in the 'origin' folder. In that file, add the line

(r'text/', 'origin.views.text'),

to the urlpatterns variable, so that this reads, ignoring the lines commented out by #:

urlpatterns = patterns(",
(r'text/', 'origin.views.text'),

)

The effect of the two urls files is to link the URL '/origin/text/' with the Python function
‘origin.views.text': this is the function 'text' in the file 'views.py' in the folder 'origin'. We now
need to restart the server to see these changes take effect. Stop the server by using control-c
in the terminal/command prompt window, and restart it with 'python manage.py runserver'. If
you now type 'http://127.0.0.1:8000/" into your browser, you should be told 'Page not found' and
told that Django expects a URL beginning 'origin/'. So this time, try 'http://127.0.0.1:8000/origin
/text/". You will get a different message: Django has recognized the url, but gives the error
"Tried text in module origin.views. Error was: 'module’ object has no attribute 'text™.

We have to edit the 'views.py' file, in the 'origin' folder. Open it, and you will see the following:

from pixelise.core import Collection
from django.shortcuts import render_to_response

def foo(request):
p = Collection(request, 'origin')
results = p.query("//text")
if results.hasNext():
text = results.next()
else:
return render_to_response(‘origin/error.html’, {message’: "Can't ffind text element"})
text_content = p.process_element(text, 'origin/base.py', False, Nore)
return render_to_response(‘origin/text.html', {'page_content": text_gontent})

SDPublisher expected there to be a function 'text' in this file. There is no such function. Change
the line 'def foo(request):' to 'def text(request)' and save the file. Now there is a function 'text’,
and things should begin to happen.

Access 'http://127.0.0.1:8000/SDPublisher/origin/text/' again. This time, you should see the text
of the first three chapters of the 1859 editon of Darwin's 'Origin of the Species' leap out at you

We are making progress. This is what 'views.py' does:

o The first two lines import functions SDPublisher needs to operate, from Pixelise and Django.

e The line "p = Collection(request, 'origin")" opens up the 'origin.dbxml' database we have
made, holding all the xml (try replacing 'origin' by 'SDPintro’ in this line to see what happens!
why?)

50f 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

o "results = p.query("//text")" goes and finds the 'text' element in the database (try replacing
'text' by 'TEIL.2' or 'teiHeader' or 'XXX' to see what happens)

e The next lines test if the element sought has been found. If it has, the element found is put in
the variable 'text'. If it has not, we are sent an error message.

e The next line (containing the process_element call) is the core of SDPublisher. The element
is sent for processing by the file 'base.py' in the 'origin' folder within the 'pixelates' folder, and
the results put in the variable 'text_content'

e The last line is the Django 'render_to_response' variable: this sends the result back to the
browser, using the template file 'origin/text.html' and assigning the content of the
'text_content' variable to '‘page_content’

1.5 Your first SDPublisher publication: formatting elements

So far, we have done nothing with the XML except return the raw text, which looks rather ugly.
To refine it, we have to use the XML itself to determine how each element should be presented.
We do this through a 'pixlelate’ file: in this case, the 'base.py' file, found in the origin/pixelates
/origin folder. (Notice that this file is placed in the subfolder 'origin’, not directly within the
'pixelates' folder. This is to ensure that we use the 'base.py’ file for 'origin’, not any other
'base.py' file for any other book. This could actually be very useful: if you wanted all your
publications to use the same 'base.py' file, just put it directly in a 'pixelates' folder for any book
-- for example, in a 'pixelates' folder within the 'pixelise’ folder -- and it will be found by every
book.)

Open that file. At the beginning, you will see the lines:

PIXELISE_PATTERNS = {
'div': 'div',

}

The PIXELISE_PATTERNS structure is how SDPublisher associates XML elements with
functions. Here, the XML element 'div' is associated with a function called 'div'. Add to this
structure the line

lpl: 'p',

so that it appears:

PIXELISE_PATTERNS = {
'div': 'div',
lpl: lpl,

}

Now, we define what we want to do with the XML p elements. Add this to the base.py file,
below the PIXELISE_PATTERNS statement:

def p(element, state, context):
if state == 'begin":
html = "<p>"
return html
if state =='end":
html = "</p>"
return html

6 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

This function will be called every time a <p> element is met as the SDPublisher traverses the
document. It is called with three parameters:

o The element itself, as a Python object with a distinct set of properties (see below)

o State: this is one of 'begin’, 'content’ or 'end' depending on whether we are at the start of the
element itself, dealing with its content, or at the end of the element

o Context: this is a Django response object. This can be very useful in some contexts: you can,
for example, have one function store information by writing it to the response object and
another function can then extract that information, effectively as a global variable. See the
Django documentation on this.

The next lines say simply: if we are at the beginning of the element, insert a <p> into the HTML
stream; if we are at the end of the element, insert a </p>.

Here is a more complex instance, which begins to show the power and ease of SDPublisher.
We want the title of the whole document to appear in larger, bold type. The title is held in a
<head> element, which is the child of <div> element with an attribute 'type' set to 'book'. This
code tests whether a <head> element is the child of a <div> element with an attribute 'type' set
to 'book’; if it is, it places the text within a HTML <H1> element. Here is the code which enables
this, in the views.py file. First, you need to include this line in the PIXELISE_PATTERNS
declaration:

PIXELISE_PATTERNS = {

'div"; 'div',
lpl: lpl’
'head': 'head',

}

Then you need to have the function for treatment of <head> elements, as follows:

def head(element, state, context):
isbookhead = False
html=""
div = element.get_parent_element()
try:
if div.get_attribute_value('type')=="book":
isbookhead = True

except:
return
else:
if state == 'begin' and isbookhead:
html = "<H1>"
if state == 'end' and isbookhead:
html = "</H1>"
return htmi

The first two lines of this function set the variable 'isbookhead' to the default value of 'False’,
and initialize the variable 'html' as an empty string. The third line locates the <div> element
which is the parent of this <head> element, and puts it in the variable 'div'. The next lines get
the value of the attribute 'type' on this <div> element and tests: is it equal to 'book'? If so, the
variable 'isbookhead' is set to 'True'. Note that this is done within a 'try/except' block: this is to
catch the case where the element has no 'type' attribute. For cases where 'isbookhead' is
"True', the following lines place the HTML <H1> element around the text of the header.

7 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

1.6 Your first SDPublisher publication: viewing by chapter

So far, we have been doing rather simple things. Let's move on. The 'Origin’ is divided into
chapters, and an obvious step would be to let the reader view one chapter at at time. Here is
how we do this.

First, we need to add a line to the 'urls.py’ file, so that SDPublisher can pick up calls by chapter
number. We add this line to the 'urls.py' file in the 'origin' folder:

(r'chapter/(?P<chapter>[*/]+)$', 'origin.views.chapter'),

to the urlpatterns variable (so that this reads, ignoring the lines commented out by #)

urlpatterns = patterns(",
(r'text/', 'origin.views.text'),
(r'chapter/(?P<chapter>["/]+)$', 'origin.views.chapter'),

)

This activates the URL "http://127.0.0.1:8000/origin/chapter/xxx" and links it to a 'chapter’
function in the views.py file, passing this function the string 'xxx' as the value of a 'chapter’
parameter. We now need to write a 'chapter' function to pick up and process this url call, in
views.py:

def chapter(request, chapter=None):
print "%s" % (chapter)
p = Collection(request, 'origin’)
results = p.query("//div[@n='CH%s'T" % (str(chapter)))
if results.hasNext():
text = results.next()
else:
return render_to_response(‘origin/error.html’, {message': "Can't find chapter %s" % (s
the_content = p.process_element(text, 'origin/base.py’, False, Nong)
return render_to_response(‘origin/text.html', {'page_content': the_cpntent})

Now, type "http://127.0.0.1:8000/SDPublisher/origin/chapter/1" into your browser, and you
should see the whole of the first chapter appear; chapter two will appear for
"http://127.0.0.1:8000/SDPublisher/origin/chapter/2"; etc. (Note the use of the "print" statement
to write the chapter number out to the command window. This is a very useful diagnostic
device, similar to the use of 'puts’ in Anastasia.)

1.7 Your first SDPublisher publication: viewing by page

All XML publishing systems can (or should) do what we have just done. The next example
shows what is special about SDPublisher (and its predecessor, Anastasia).

The 'Origin’, like every other book (and indeed most manuscripts), is divided into pages.
Obviously, one would like to view the book page by page. It is exactly this which most XML
systems make difficult. The second thing everyone learns about XML is that it has problems
with overlapping hierarchies. As almost every edition of a text from a primary source is going to
have overlapping hierarchies (text divided into chapters, paragraphs, sentences; but the
primary source spreads the text across different pages, with the breaks between pages not
corresponding with the breaks in the text) this is a problem. Thus: every chapter break in the
1859 'Origin’ falls on a page break. But, the paragraph and sentence breaks do not:

8 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

paragraphs and sentences run across page breaks.

SDPublisher, like its predecessor Anastasia, is designed explicitly to cope with this situation.
Essentially, unlike virtually every other XML processing tool, SDPublisher (like Anastasia) treats
the XML not as a tree, but as a stream. Thus, it is possible to start processing at any point in
the stream and end at any point in the stream: for example, to start at the beginning of a page
and end at the end of a page.

So, let's make this happen. We are going to ask SDPublisher to show us one page, and only
one page, of the 'Origin’'. First, we need to add a line to the 'urls.py' file, so that SDPublisher
can pick up calls by page number. We add this line to the urls.py file:

(r'page/(?P<page>["/]+)$', 'origin.views.page'),

to the urlpatterns variable (so that this reads, ignoring the lines commented out by #)

urlpatterns = patterns(",
(r'text/, 'origin.views.text'),
(r'chapter/(?P<chapter>[*/]+)$', 'origin.views.chapter'),
(r'page/(?P<page>["/]+)$', 'origin.views.page'),

)

This activates the URL "http://127.0.0.1:8000/SDPublisher/origin/page/xxx" and links it to a
'page’ function in the views.py file, passing this function the string 'xxx' as the value of a 'page’
parameter. We now need to write a 'page' function to pick up and process this url call, in
views.py:

def page(request, page=None):

p = Collection(request, 'origin')

#Grab all the page breaks

pbn, page, pb = getAllPages(p, page)

print 'pages found %s' % (len(pbn))

if pbn == False or page == None:
return render_to_response(‘origin/error.html’, {message": "Can't find page %s" % (str(}

else:
page_content = p.process_element(pb, 'origin/base.py', True, None)
#Work out the next and previous pages
thispb = pbn.index(page)

if thispb==0:
previouspb = None
else:

previouspb = pbn[thispb-1]
if thispb+1 == len(pbn):

nextpb = None
else:

nextpb = pbn[thispb+1]
return render_to_response(‘origin/text.html', {'page_content". paq;e_content, ‘current_p

This function calls another function:

def getAllPages(p, page):
#Grab all the page breaks

9 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

results = p.query("//pb")
if results == None:
return (False, False, False)
pbn =[]
while results.hasNext():
if results.next().get_attribute_value('id")[0]=="S":
pbn.append(results.next().get_attribute_value('n"))
#Grab the pb
pb = None
page = str(page)
results = p.query("//pb[@n='%s"T" % page, 1, 1)
if results.hasNext():
pb = results.next()
else:
page = None
return (pbn, page, pb)

The first function, 'page’, receives the number of the page sought. It then calls the function
'getallpages' with this page number. This function gets all the pages by an XQuery-formatted
call: 'results = p.query("//pb")" and puts them in a 'results' list. Our example file follows the
"Trojan Horse' treatment devised by Steve DeRose, where each pb element marking the
beginning of a page is matched by another pb element marking the end of the page: the start
of page 7 is marked with <pb id="S-7-1859" corres="E-7-1859" n="7"/> , and the end with <pb
id="E-7-1859" corres="S-7-1859" n="7"/>. The function tests the id attribute of each pb element
found: if it begins with 'S' it appends each page break found to a list 'pbn'. The function then
searches for the particular page sought, with another XQuery call ('p.query("//pb[@n="%s"" %
page, 1, 1)"): if it finds it, the element is put into the 'pb' variable, and the function then retums
three values: the list of page-break 'n' values, the 'n' value of the page sought and the <pb>
element corresponding to the page sought.

The 'page' function then resumes, and takes up these three values returned by 'getallpages’. It
prints out the number of pages found (72). It then calls the process_element function with the
<pb> element found. Note that the third parameter is set to 'True': this tells SDPublisher to
process not just this element, but every following element found. Thus, in your browser you
should see the whole text beginning with the page sought. If you set the third parameter to
'False' you will see that the text disappears, as only the content of the <pb> is shown: and as it
has no content, nothing is shown.

But, this is not doing what we want. It is showing every page to the end of the book, not just the
page we want. We want to stop at the end <pb> element, corresponding to the start <pb>
element for this page. We do this by changing what happens when we meet a <pb> element, in
the 'base.py' file called by process_element. First, we add to the PIXELISE_PATTERNS
structure at the beginning of the file the line

lpbl: |pbl’

so that it appears:

PIXELISE_PATTERNS = {
'div'; 'div',
lpl: lpl,
'head": 'head',
lpbl: lpbl’

10 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

)

Now, we add a 'pb' function to the 'base.py' file, as follows:

def pb(element, state, context):
id = element.get_attribute_value('id")
if id[0]=="E"
return {'stop_processing': True}

As SDPublisher traverses the document from the starting page requested, this element is
called every time a <pb> element is met. The function then tests the value of the 'id" attribute. If
it begins with an 'E' then it is the end <pb> element corresponding to the start <pb> element we
began with, and the function then returns with the value 'stop_processing' set to "True' (this
'stop_processing' variable is the equivalent of the Anastasia 'finish' variable). This stops
SDPublisher at that point. Thus you will see the text of only this page in the browser , just as
we want.

1.8 Your first SDPublisher publication: generating links; template files

The 'page’ function in 'views.py' does a few more things, after it puts the content of the page
into the 'page_content' variable. First, it finds out if there are pages preceding and following this
page: if there are, their page numbers are put into the 'previouspb' and 'nextpb' variables.
Then, rather opaquely, all this information (the 'page_content', the 'page’, 'previouspb' and
'nextpb’ variables) all appears in this line, which creates the text we see in our browser:

return render_to_response(‘origin/text.html', {'page_content': page_coptent, 'current_page":

This is a Django function, designed to send content in response to a browser request
('render_to_response'). The first parameter gives the name of a template file, 'origin/text.html’,
while the following parameters state variables to be used in this template file. You will find the
template file 'text.html' in the subfolder 'origin' in the folder 'templates’ in the 'origin’ folder:

{% extends "origin/base.html" %}
{% block content %}
<div class="nav">
{% if previouspb %}
Previous {{previou
{% endif %}
{{ current_page }}
{% if nextpb %}
Next {{nextpb}}
{% endif %}
</div>
<div id="page">
{{ page_content|safe }} </div>
{% endblock %]}

What is happening here? The first line tells us that this file 'extends' another file, 'base.html’,
which we will look at in a moment. The next line says: all that follows is the content of a 'block’
variable, named 'content'. The next lines state what is to go into that variable: first, some html
(<div class="nav">) and then a Django construct {% if previouspb %}'. We recall that the
number of the previous page was assigned to a variable 'previouspb' in the Django

11 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

render_to_response’ call. If there was a page before this (that is, previouspb is not 'None') then
the following line comes into play:

Previous {{previouspb}}-

This Django call constructs the url for the previous page. First, the '% url' indicates that we are
making a url. Then, the function corresponding to the url, origin.views.page, is given. Django
looks up the urls declared in the urls.py file and finds that this function corresponds to the url
declared in the line

(r'*page/(?P<page>["/]+)$', 'origin.views.page')

It then places the value of the previouspb variable in the url, so creating the url
'http://127.0.0.1:8000/SDPublisher/origin/page/7' when the value of 'previouspb' is '7'. Similarly,
another url is created for the link to the next page. Then, all the HTML contained in the
'page_content' variable is written into a </div> element, and the page is ready for display in the
browser.

We are almost finished this demonstration of SDPublisher. There is one more piece of the
puzzle we have not yet explained. The template file 'text.html' contains the line '% extends
"origin/base.html". Open the file 'base.html' in the subfolder 'origin' of the 'templates' folder:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML Strict//EN" "http://www.w3.org/TR/xhtml1/I
<html>
<head>
<title>Darwin's Origin</title>
<link type="text/css" rel="stylesheet" href="origin/www/origin.csg" />
<meta http-equiv="content-type" content="text/html; charset=utf{8" />
</head>
<body>
{% block content %}{% endblock %}
</body>
</html>

Here we see the familiar frame of an HTML page: the opening <html> statement, followed by
the <head> element, and further on, within the <body> element, the Django {% block content
%} statement, which embeds the text returned to the 'text.html' template file. We also see, in
the <head> element, a link to a css stylesheet, 'origin.css', contained in a folder 'origin/origin
/www'. At present this document is not being found. To find this document we need to add a
line to the urls.py file (in the 'origin' folder), to handle the call to the 'origin.css' file:

(r'www/(?P<path>.*)$', 'django.views.static.serve', {'document_root": "Wwww'}),

Thus, the whole urlpatterns variable now looks like:

urlpatterns = patterns(",
(r'text/', 'origin.views.text'),
(r'chapter/(?P<chapter>[*/]+)$', 'origin.views.chapter'),
(r'page/(?P<page>["/]+)$', 'origin.views.page'),
(r'www/(?P<path>.*)$', 'django.views.static.serve', {'document_roof": 'www'}),

)

12 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

This added line allows us to feed requests for files (html, css, image files, etc) into
SDPublisher, and tells SDPublisher where to look for them: in this case, in a 'www' folder within
the 'origin' folder. Thus, the call to the css file 'origin/www/origin.css' will look for the file in that
‘origin' folder.

You will see that we have a 'www' folder within the 'origin' folder, containing the file 'origin.css".
This file contains the line:

body {background-color: yellow;}

Now, when you reload the text, the browser will now find this file, and use this command to set
the background colour to a rather horrible yellow. You can use the same technique to display
image files: a call to 'http://127.0.0.1:8000/origin/www/fig1.gif' would display the image file
'fig1.gif' in the 'www' folder.

1.9 Starting your own project

So far, we have been working with the specimen XML file 'origin.xml' and the files provided with
it. You may now be ready to start out with your own XML file. Presuming you have your own
xml file in TEI format, 'mybook.xml', this is how you can get started fast on making an
SDPublisher book from this file:

o Start the new SDPublisher book by typing 'python manage.py startxml mybook' at the prompt.
You should see the folder 'mybook' now appear in the 'newedition' folder

o Tell SDPublisher about this new book (as outlined in 1.4 above) by editing the 'settings.py’ file
(that is: adding 'SDPublisher.mybook' to the INSTALLED_APPS variable)

o Copy your 'mybook.xml' file into the new 'mybook’ folder. Then, input it into the database by
typing 'python manage.py putxml mybook -f mybook/mybook.xml -n text' at the prompt

o Edit the urls.py file in the SDPublisher folder so that the urlpatterns variable contains the line
'(r'*mybook/', include('mybook.urls')),. Create a new urls.py file (or copy one over) in the
'mybook’ folder, and edit it so that the urlpatterns variable contains the line '(r'text/',
'mybook.views.text'),)

o Edit the 'views.py' file in the 'mybook’ folder, so that it contains these lines:

from pixelise.core import Collection
from django.shortcuts import render_to_response

def text(request):
p = Collection(request, 'mybook')
results = p.query("//text")
if results.hasNext():
text = results.next()
else:

return render_to_response('mybook/error.html', {{message": "C?\F find text element"})

text_content = p.process_element(text, 'mybook/base.py’, False, None)
return render_to_response('mybook/text.html’, {'page_content': tex;_content})

o Make a new subfolder 'mybook’ inside the 'mybook/pixelates’ folder, and move the 'base.py’
file inside the 'pixelates' folder into that subfolder.

o Make a new folder 'templates' in the 'mybook’ folder, and a new subfolder 'mybook’ within it.
Copy over the files 'text.html', 'error.html' and 'base.html' from the 'origin/templates/origin’
folder into that directory. You will need to open 'templates/mybook/text.html' and alter the line
{% extends "origin/base.html" %}' to {% extends "mybook/base.html" %}’

13 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

14 of 25

Once you have done this: stop and restart the server by typing 'Control-C' followed by 'python
manage.py runserver' into the terminal. Now, if you type 'http://127.0.0.1:8000/mybook/text/'
into your browser, you should see all the text of your XML. Now, you can start refining your
book using the methods outlined in this document.

We have now reached the end of this 'Getting started’ documentation. The following sections
provide reference documentation for SDPublisher, and notes on some useful utility functions
and tools to work with SDPublisher.

2 SDPublisher Reference Documentation
2.1 The Pixelise processor

The core processing module of SDPublisher is Pixelise. Typically, SDPublisher works as
follows:

e The server recognizes a URL (e.g. 'SDPintro/..") as requiring handling by the SDPublisher
system, and passes the whole URL to SDPublisher. In a production system, SDPublisher will
be running within a Python server module.

e SDPublisher matches the URL to those listed in the 'urls.py' files in the main folder and in the
subfolder for each book, and identifies the SDPublisher book, module and function which
should handle the call. Thus, the call 'SDPublisher/origin/text/' is mapped to 'origin.views.text"
that is, to the book 'origin’, to the module 'views', instantiated as a file 'views.py', to be
handled by the function 'text' in that file.

o Up to this point, we have been using Django to receive the URL and work out what should be
done with it. Now, we invoke Pixelise. First, we work out what XML body of data corresponds
to the SDPublisher book. We do this by importing the pixelise 'Collection’ object, using the
line 'from pixelise.core import Collection'. From this Collection object, you gain access to the
XML you want through the call 'p = Collection(request, 'mybook')'. This finds the XML
database for 'mybook’ in the 'Collection’ object and places it in the variable 'p'. Then we work
out just what XML element in that book corresponds to the URL call and we have Pixelise
retrieve that element, from the XML database for this book, contained in the 'p' variable.

¢ Now we have retrieved the element: we send the element for processing by the core Pixelise
function, process_element (see below). Essentially, this allows us to transform the XML into
HTML (or anything we like), in a very efficient fashion.

o After Pixelise does its work, we return to Django, and use the sophisticated Django template
language to 'plug' the Pixelise output into a webpage.

Pixelise (the core processing module of SDPublisher) has a few specialized constructs
(keywords, variables, etc), of which you need to be aware. You have met most of them in the
'Getting started' section. The two most important single functions in Pixelise are 'Collection' and
'process_element'. 'Collection’ is the entire single body of XML data known to the publisher
system: that is, all the XML databases which it has access to, and from which you wish to
extract all the information you want to supply the reader. In the model above, SDPublisher
works out which Pixelise Collection corresponds to the book sought. It then uses an XQuery
function, 'query’', to retrieve the element sought, and then passes the element to the
process_element function.

process_element is called with four parameters, thus process_element(text, "base.py", True,
None):

text The first parameter must be a valid XML element mapped to a Python

object. See below for details of the properties of the object.

20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

base.py [The second parameter must be the name of a Python script file
contained in the 'Pixelates' folder. This file must contain a
PIXELISE_PATTERNS statement, mapping elements to functions.

True This third parameter is what distinguishes Pixelise, and SDPublisher,
from most XML processors. When set to True, this parameter tells
Pixelise: process this element AND carry on past the end of element,
either to the end of the document or until a stop_processing (see
below) is met. When set to False (the default) the processor stops at
the end of the element, and returns.

None [This is a Django response object, and Pixelise will pass this parameter
into every element method function in the 'pixelates' files. This can be
very useful in some contexts: you can, for example, have one function
store information by writing it to the response object and another
function can then extract that information, effectively as a global
variable. See the Django documentation on this.

Note that process_element can be used recursively. That is: you could call (say) a <ref>
element, and discover that you would like to embed the contents of a <note> element at that
point. You could call that process_element for that <note> and append what is returned to the
output stream.

We have discussed a further Pixelise core function, process_element_range. This would take
at least one further parameter: the XML element at which processing should stop, thus
avoiding the use of the stop_processing construct. For example, one could call this function
with the start and end <pb> elements for a particular page and so show only the text on that
page. Additional parameters for character offsets from the XML elements might also be passed
in: so one could start 16 characters after (or before?) a particular element, and process the
XML span up to 30 characters after (or before?) a particular element. You can see why we
have not yet done it!

Every time the Pixelise processor meets an element, it looks up that element in the
PIXELISE_PATTERNS list at the beginning of the .py file called to process that element, as the
second parameter of the process_element call. Note that one can qualify elements by their
paths in the PIXELISE_PATTERNS list, and have the same function called for any number of
element and element combinations. In this example, head elements one or two divs deep in
the document will both be processed by a function 'head1'; all other head elements will be
processed by a function 'generic_head'

PIXELISE_PATTERNS = {
'body/div/head": 'head1’,
'body/div/div/head": 'head1’,
'head": 'generic_head',

}

If the processor finds the element name specified in the list, it calls the function in the list
specified for that element three times as it processes the element, with three parameters. The
first parameter is the XML element itself that you want to process, mapped to a Python object:
you can use the object methods in the next sections to get information about the XML element.
The second parameter is set as indicated below.

|begin |When given as the value of the second parameter in an element call,

15 of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

| |indicates that the Pixelise processor is at the beginning of the element

content |When given as the value of the second parameter in an element call,
indicates that the processor is about to process the content of the
element

end When given as the value of the second parameter in an element call,
indicates that the processor is at the end of the element

The function call can return with three possible values: text, to be written to the output stream;
'hide_content' and 'stop_processing":

text Text returned by the element call is appended by the
processor to the output stream. Thus: 'return html' adds
whatever text is contained in the 'html' variable to the output
stream.

hide_content If this Pixelise variable is set to "True’' when an element call
(with the second parameter set to 'content') returns, the
content of this element is hidden -- that is, the processor skips
past all element content to the end of the element. Thus: if the
element function returns with the statement "return
{'hide_content":True}" the content is hidden.

stop_processingl|If this Pixelise variable is set to 'True' when an element call
(with the second parameter set to 'end’) returns, the Pixelise
processor stops and returns control to the function which
called process_element. Thus: if the element function returns
with the statement "return {'stop_processing":True}" the
processing stops.

There is one other Pixelise variable which you might meet: PIXELISE_OUTPUT _LIMIT. This is
a safety net: if the number of elements processed exceeds the number set in
PIXELISE_OUTPUT_LIMIT, Pixelise will stop. You can set PIXELISE_OUTPUT_LIMIT in the
settings.py file. It is a good idea to set this to something real: it is quite possible to send
Pixelise into an endless loop (e.g. by using process_element to call an ancestor, which then
calls the starting element, which calls the ancestor, and so on forever) and this will guard
against that.

2.2 Element methods: getting elements

Within SDPublisher, every XML element is mapped to a Python object, with a rich set of
methods. For a notional <div> element, there are many methods available for every Python
object in SDPublisher, corresponding to the <div> element (see 3.3 for information on how to
list all the methods available for any element). We here describe the Pixelise methods created
by us to allow retrieval of XML elements or of information about them. All of these take the form
"xxx_xxx', with underscores: get_attribute_value for example. In a DBXML implementation,
there are many other methods for each element: 'getNextSibling' for example. We provide
Pixelise wrappers for those 'native' DB XML functions which we have found useful: thus,
instead of calling getNextSibling you should call get_next_sibling. This is intended to make it
possible for SDPublisher to be implemented with other database systems. We recommend that
you use only the Pixelise functions described here. If you do this, you will find it very easy to
use your SDPublisher files with any database which provides an implementation of
SDPublisher. Formal documentation of the SDPublisher API is given at demo.pixelise.org/api/.

16 of 25 20/09/2009 06:48

Getting started with SDPublisher

17 of 25

Many of these methods are self-explanatory, and called without parameters. For example:

http://127.0.0.1:8000/SDPintro/print/

firstchild = div.get_first_child()

retrieves the first XML element which is a child of this particular div element, and assigns it to

the variable firstchild.

We give details of all Pixelise methods. In this section, we list methods which for, any given
element, retrieve related elements: siblings, parents, children, etc.. Note that throughout, if the
method cannot find the element sought, it will return a Pixelise exception error. This allows the
calling function to deal gracefully with the failure to find the element, by placing the call in a
'try...except' block. This guards against the situation, all too familiar from Anastasia, where the

program cannot find an element but carries on as if it had, usually with dire consequences.

get_parent_element

Has no parameters: retrieves the element
which is the immediate parent. If there is no
such element, an exception is thrown.
Example: div.get_parent_element() returns
the immediate parent of the <div> element.

get_ancestor_by name

Has one parameter, the name of the element
sought; retrieves that ancestor, regardless of
how far above in the document tree that
ancestor is. If there is no such ancestor, an
exception is thrown. Example:
div.get_ancestor_by name('body') retrieves
the <body> element which is the nearest
ancestor of the <div> element.

get_first_child

Has no parameters: retrieves the element
which is the first child. If there is no such
element, an exception is thrown. Example:
div.get_first_child() returns the first child of the
<div> element.

get_last_child

Has no parameters: retrieves the element
which is the last child. If there is no such
element, an exception is thrown. Example:
div.get_last_child() returns the last child of the
<div> element.

get_child

Has one optional parameter, the name of the
element sought. If the name of the element
sought is given, retrieves the child which is an
immediate child (not a grandchild, or more
distant descendant) of the parent element and
which matches the name sought. If there is no
such child, an exception is thrown. If the
name of the element sought is not given, then
retrieves the first child found. Example:
div.get_child('p') retrieves the <p> element
which is the first child of the <div> element;
div.get_child() retrieves the first child of the
<div> element.

20/09/2009 06:48

Getting started with SDPublisher

http://127.0.0.1:8000/SDPintro/print/

get_child_by name

[Deprecated in 1.1: use get_child with the
name of the element sought as a parameter]

get_descendant_by name

Has one parameter, the name of the element
sought; retrieves the child which is a
descendant (child, grandchild, or more distant
descendant) of the parent element. If there is
no such child, an exception is thrown.
Example: div.get_descendant_by name('p")
retrieves the first <p> element which is a
descendant of the <div> element

get_children

Has one optional parameter, the name of the
elements sought. If the name of the elements
sought is given, returns a Python list of the
immediate children of the parent element
which match the name sought. If the name of
the element sought is not given, then
retrieves a Python list of all the immediate
children of the parent element. If there is no
such child, an exception is thrown. Example:
allps=div.get_children('p') retrieves a list of the
<p> elements which are children of the <div>
element and puts the list in the variable 'allps'.
'You can iterate through this list using the
Python 'for' call: 'for p in allps:'.

get_children_by name

[Deprecated in 1.1: use get_children with the
name of the element sought as a parameter]

get_next_element

Has one optional parameter: the name of the
element sought. If the name of the element
sought is given, retrieves the next element
which matches the name sought. If there is no
such element, an exception is thrown. If the
name of the element sought is not given,
retrieves the next element, of any kind
(including text elements) in the document
stream. If the next element is a child, it
retrieves the first child; if it is a right sibling, it
retrieves that; else it looks up the element
ancestors and through their children and
siblings till it finds the next element. If there is
no next element (we are at the end of the
document), an exception is thrown. Example:
div.get_next_element() retrieves the next
element from the beginning (not the end) of
the <div> element

get_next_element_by name

[Deprecated in 1.1: use get_next_element
with the name of the element sought as a
parameter]

get_previous_element

18 of 25

Has one optional parameter: the name of the
element sought. If the name of the element
sought is given, retrieves the previous

20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

element which matches the name sought. If
there is no such element, an exception is
thrown. If the name of the element sought is
not given, retrieves the previous element, of
any kind (including text elements) in the
document stream. If the previous element is
the last child of the left sibling, it retrieves that
last child; if it is a left sibling, it retrieves that;
else it looks up the element ancestors and
through their children and siblings till it finds
the previous element. If there is no previous
element (we are at the beginning of the
document), an exception is thrown. Example:
div.get_previous_element() retrieves the last
element before the beginning (not the end) of
the <div> element

get_previous_element_by name |[Deprecated in 1.1: use
get_previous_element with the name of the
element sought as a parameter]

get_next_node Works as for get_next_element, but ignores
'#text' nodes (that is, nodes containing only
character data). It has one parameter, set to
either "True' or 'False’: if 'True' it ignores the
children of the starting node, iterating only
through siblings and ancestors. If there is no
next node, an exception is thrown. Example:
div.get_next_node('True') finds the next node
from the beginning (not the end) of the <div>
element which is not a child of the <div>
element or a '#text' node.

get_previous_node Works as for get_next_node, but locates the
previous node in the document stream, not
the next node. If there is no previous node, an
exception is thrown.

has_right_sibling Has no parameters; returns 'True' if the
element has a right sibling of any kind; 'False'
if it does not. Example: div.has_right_sibling()
returns "True' if the <div> element has a right
sibling of any kind; 'False' if it does not.

has_left_sibling Has no parameters; returns 'True' if the
element has a left sibling of any kind; 'False’ if
it does not. Example: div.has_left_sibling()
returns 'True' if the <div> element has a left
sibling of any kind; 'False' if it does not.

get_next_sibling Has one optional parameter, the name of the
element sought. If the name of the element
sought is given, retrieves the element with
this name which is the next (right) sibling. If
there is no such element, an exception is
thrown. If the name of the element sought is

19 of 25 20/09/2009 06:48

Getting started with SDPublisher

20 of 25

http://127.0.0.1:8000/SDPintro/print/

not given, retrieves the next sibling. Example:
p.get_next_sibling('l') returns the <I> element
if the <p> element has a right sibling which is
a <I> element; throws an exception if it has
not.

get_next_sibling_by name [Deprecated in 1.1: use

get_previous_element with the name of the
element sought as a parameter]

get_previous_sibling

Has one optional parameter, the name of the
element sought. If the name of the element
sought is given, retrieves the element with
this name which is the previous (left) sibling. If
there is no such element, an exception is
thrown. If the name of the element sought is
not given, retrieves the left sibling. Example:
p.get_previous_sibling('l') returns the <I>
element if the <p> element has a left sibling
which is a <I> element; throws an exception if
it has not.

get_previous_sibling_by name |[[Deprecated in 1.1: use

get_previous_element with the name of the
element sought as a parameter]

Note that character data nodes (that is, nodes containing only text, not elements) have the

name '#text'.

2.3 Element properties: getting information about elements

In this section, we list Pixelise methods for retrieving information about particular elements:

get_attribute_names

Has no parameters: retrieves a list of the names of
attributes for the element. If there are no attributes, the
method returns 'None'. Example:
div.get_attribute_names() returns a list of the attributes
for the <div> element.

get_attribute_value

Has one parameter, the name of the attribute whose
value is sought. If the element has an attribute of that
name, the method returns the attribute value as a string.
If there is no attribute with this name, an exception is
thrown. Example: for the element <div type="book">
div.get_attribute value('type') returns the string 'book'.

create_path

Has no parameters; retrieves the element path from the
top of the document to the element as a Python list.
Example: within this document, the path to this element
<cell> element would be returned as TEI.2 text body div
div div table row cell.

print_element_debug

Has no parameters; retrieves the name of the element
and its attributes. Example: for the element <div
type="book"> div.print_element_debug() returns the string

20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

'<div type="book">".

get_node_name Has no parameters: what this method returns depends on
the type of object calling this method. If the object is an
XML element, the method returns the name of the
element. Examples: for the element <div>
div.get_node_name() returns the string 'div'; for the
attribute 'type="book™ attribute.get_node name() returns
the string 'type'.

get_node_value Has no parameters: what this method returns depends on
the type of object calling this method. If the object is an
XML attribute, the method returns the value of the
attribute. Example: for the attribute 'type="book™
attribute.get_node_value() returns the string 'book’. (It's
hard to see how this could work with an element instead
of an attribute!)

isspace Has no parameters: returns 'True' if the element contents
are just white space (spaces, tabs); 'False' if they are not.
Example: div.isspace() returns 'True' if the <div> element
contains only white space; 'False' if it does not.

2.4 Query functions

SDPublisher provides support for most (if not all) XQuery searches via the method 'query’,
available on every XML collection within Pixelise. You retrieve the XML collection you are
interested in by a call to the Pixelise Collection object: "p=Collection(request, 'origin')" retrieves
the XML for the book 'origin'. In the DB XML implementation, this is the contents of a single
.dbxml database (‘container' in DB XML parlance). The typical process in SDPublisher is as
follows (see 2.1 above):

o A SDPublisher function (eg 'chapter') is called, with a parameter pointing to the document
section to be processed (e.g. '1' for chapter 1)

o SDPublisher identifies and initializes the Pixelise collection appropriate to this document,
thus: 'p=Collection(request, 'origin")’

e For this 'p' object, representing the entire XML document, Pixelise then retrieves the XML
element sought by 'p.query’

The 'query' method is called with three parameters, thus p.query("//pb", 1, 50):

/lpb [The first parameter must be the query itself, formatted as an XQuery string.
This searches for all <pb> elements

1 |The second parameter specifies the first result we want returned. If this is
1" then the first 'hit' is the first result returned:; if it is '50', the 50th hit is the
first result returned

50 |[The third parameter specifies the last result we want returned. If this is '1'
then the first 'hit' is the last result returned; if it is '50', the 50th hit is the last
result returned

Thus: using p.query with only one parameter will return all matches of the query string: hence,
p.query("//pb") will return all <pb> elements. If you wish to limit the hits returned, you must
specify both the second and third parameters. p.query("//pb", None, 1, 50) will return the first

21 0of 25 20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

50 hits; p.query("//pb", None, 51, 100) the next 50, etc.

Here are some sample XQuery commands, embedded in p.query:

|p.query("//text") |Retrieves all <text> elements

|p.query("//pb[@n='7]", 1, 1) |Retrieves the first <pb n="7"/> element

p.query("//p[contains(., Retrieves all <p> elements containing the word

"deviation")]") "deviation".

p.query("//feed Retrieves all <feed> elements containing an

fauthor="peterrr73"") <author> element which contains the text
'peterrr73'.

Note that the results of a query method are always returned as a Python list. If nothing is
found, the query returns 'None'; if something is found, you can extract it by using the Python
'next()' method, and iterate through the results using the Python 'hasNext method()' (or just use
the Python 'for' method, thus:

results = p.query("//pb")
if results == None:
return (False)
pbs =[]
while results.hasNext():
pbs.append(results.next())
return (pbs)

This fragment runs a search for all page breaks. If it finds any, it initializes a Python list (pbs)
and appends each page break to the list.

2.5 Template and Pixelate file locations

In the 'Origin of Species' example given above, we place the Pixelate file 'base.py' inside a
subfolder 'origin’, inside the 'pixelates' folder. We then call that file by requesting 'origin/base.py
in the process_element call. Similarly, we have the templates files 'text.html' and others in a
subfolder 'origin' within the 'templates' folder, and we request 'origin/text.html" in the
render_to_response call.

We could have done without the 'origin' subfolders, placed the 'base.py' and 'text.html' files
directly within the 'templates’ and 'pixelates' folders, and called them simply by invoking
'base.py' and 'text.html'. Why do we not do that, and instead use the apparently unnecessary
'origin' subfolders?

We do this because of how Django finds pixelate and template files. Django knows to look for
these in 'pixelates’ and 'templates' folders. Thus, when it is told to find 'base.py' it looks in every
pixelate folder it knows about: that is, in the pixelate folders for both 'SDPintro’, 'origin', and
every other book you have. As soon as it finds a 'base.py’ file in any of these, it stops looking
and uses that one. Thus, when we call 'base.py' while processing the book' origin' it could
easily bring back the 'base.py' file for 'SDPintro’ (or any other book at all). Django does exactly
the same for templates: the request for 'text.html" while processing 'origin' could bring back the
'text.html' file for 'SDPintro’, not 'origin’'.

You can stop Django returning the 'wrong' pixelate or template file by specifying a path for the
file, thus 'origin/base.py' will find only the 'base.py' file in a folder 'origin' in a 'pixelates’ folder.

22 of 25 20/09/2009 06:48

Getting started with SDPublisher

23 of 25

That is how we do it in these examples.

http://127.0.0.1:8000/SDPintro/print/

Although this seems annoying, you can make good use of how Django does this. You could
have a single 'base.py' or 'text.html' file which you want used by all your books. Just place this
file in a 'pixelates' or 'templates' folder within one of your books, invoke it as plain 'base.py’ or
'text.html' without a path, and every book which invokes plain 'base.py' or 'text.html' without a

path will find it.

3 Utility functions and tools

3.1 SDPublisher management functions: startxml and others

SDPublisher provides a few useful functions, for setting up and managing publications. These
are all run from the command line, inside the folder containing the books you want to publish.
The next commands presume you have typed 'cd SDPublisher' from the command line to move
into the SDPublisher folder.

startxml

Example: python manage.py startxml mybook

This creates a folder 'mybook' within the Django project folder,
containing various starting folders and files which SDPublisher will
need (for example: a skeleton 'views.py' file; a 'pixelates' folder, and
an empty DB XML container 'mybook.dbxml' etc.)

Note that after running startxml the user has to edit the settings.py file
in the parent folder, by editing the INSTALLED_APPS list and adding
various lines; see 1.4 above.

indexxml

Example: python manage.py indexxml mybook -f mybook/mybook.xml
This creates an index of the xml in 'mybook.xml', in the folder
'mybook’. For larger documents, this can speed up various operations
immensely. Counterintuitively, in DB XML it is faster to create the
index before inputting the XML into the database, using the next
command.

putxml

Example: python manage.py putxml mybook -f mybook/mybook.xml
-n text

This inserts the xml in 'mybook.xml', in the folder 'mybook’, as the
document 'text' into the DB XML container 'mybook.dbxml'. If there is
already a document 'text' in that DB XML container, an error message
is generated (see rmxml below) This makes use of the document
feature in DB XML -- not supported, | expect, in all XML or other
databases

rmxml

Example: python manage.py rmxml mybook -n text
This removes the document 'text' from 'mybook’. You can then run
'putxml’ to reinput the edited document.

putallxml

Example: python manage.py putallxml mybook -d mybook/mybookxml
This locates the folder 'mybookxml' in 'mybook’, finds all the files with
the extension '.xml" in that folder, and adds all of them to book
'mybook’. You can specify all files with a different extension by adding
an '-e' flag to the call: "-e tei' will add all files with the extension ".tei'.

There is scope for adding many more command line management functions -- and for refining
the ones we have. But, beyond the most basic level, this might be excessively dependent on
the individual database we happen to be using. Perhaps we should not go down that route.

20/09/2009 06:48

Getting started with SDPublisher

24 of 25

http://127.0.0.1:8000/SDPintro/print/

3.2 DB XML command line functions

It can be useful to manipulate the DB XML database directly, rather than through the Python
interface. To do so, you need to move into the same folder as the dbxml file for your book: thus,
if you are in the folder 'SDPublisher' holding the folder 'mybook’ you would need to type 'cd
mybook' to move into the 'mybook’ folder holding 'mybook.dbxml'.

Before executing any of the following commands, you need to start the dbxml interpreter from
the command line, after making sure that you are in the folder holding the dbxml file. You can
start the interpreter just by typing

dbxml

Followed by the return key at the command prompt. You may have to give the full path to the
dbxml application: thus (for example):

"C:\Program Files\Oracle\Berkeley DB XML 2.4.16\bin\dbxml"

You should then get the command prompt 'dbxml>'. The following commands are then

available:

openContainer

example: openContainer origin.dbxml

Opens the specified .dbxml container file. All subsequent
operations are on this file until it is closed. All the following
examples presume that the container origin.dbxml has been
opened by an openContainer call.

putDocument

example: putDocument text origin.xml f
Inserts the document 'origin.xml' into the container under the
name 'text'.

removeDocument

example: removeDocument text
Removes the document with the name 'text' from the
container.

query

example: query
‘collection("origin.dbxml")//ab[@id="CH1-100-100-1859"]'
Finds the <ab> element with id="CH1-100-100-1859" in
origin.dbxml (the first sentence of the 1859 'Origin").

print

example: print
Prints the last object found. Following the last call, the <ab>
element and its content will be printed.

removeNodes

example: removeNodes
"collection("origin.dbxml")//divi@n="CH1"])//ab’
Removes all <ab> elements in the <div n="CH1"> element.

sync

example: sync
Writes the .dbxml container to disc, so saving all changes
made.

exit

example: exit
Quits DB XML.

Like all industrial-strength databases, DB XML has a powerful indexing capacity. Once your

20/09/2009 06:48

Getting started with SDPublisher http://127.0.0.1:8000/SDPintro/print/

source XML grows beyond a certain size, you will find that DB XML indices dramatically
increases performance: on a 28 megabyte XML file we have found search performance
improving by a factor of 30,000 to one. Here are some indexing commands, to be executed
from the command line after the .dbxml container has been opened:

addIindex "" target node-attribute- Indexes all attributes with the name
equality-string 'target’.

addIindex "" id node-attribute-equality- Indexes all attributes with the name
string id'.

|add|ndex "" w node-element-presence |Indexes all <w> elements.
|add|ndex "" p node-element-presence |Indexes all <p> elements.

We have found that it is not only queries which are sped up by indexing: all DB XML operations
appear faster. There is an overhead, as indices might add 25% or more to the database size,
which might itself be around three times larger than the original XML. But the speed advantage
is worth the extra storage needed.

3.3 Running Pixelise from the shell

An advantage of the Python scripting environment is that one can open a Python 'shell' and
access the full range of SDPublisher functions from the shell. This is a useful way of checking
what is happening for any given book inside SDPublisher. Here is an example of a Python shell
session within SDPublisher:

C:\Documents and Settings\All Users\editions>python manage.py shel
Python 2.5.4 (r254:67916, Dec 23 2008, 15:10:54)
[MSC v.1310 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more informatign.
(InteractiveConsole)

>>> from pixelise.core import Collection
>>> p = Collection(‘origin’)
>>> results = p.query("//ab[@id="CH2-100-100-1859'T")
>>> firstab = results.next()
>>> print firstab
<ab n="100" id="CH2-100-100-1859">BEFORE applying the principlep ... </ab>

The key here is the first command: 'python manage.py shell'. This starts the shell. The next
command imports the Collection method from Pixelise, and the line 'p = Collection(‘origin')’
initializes the dbxml database for the book 'origin' and attaches it to the variable 'p'. Thereafter,
all happens exactly as it would in a .py script: we retrieve the first sentence of the second
chapter and print it to the window.

There are many other useful tools you can run from the shell. For example, you can see a list
of all the methods available for a given object by typing the object name and then pressing the
tab key twice (this may require IPython installation).

25 of 25 20/09/2009 06:48

